The Creator Overwhelm Problem (And Why You Can’t Ignore It Anymore)
If you’re an influencer on Instagram, TikTok, or YouTube, you know the feeling all too well:
- Hundreds of new DMs flood in after a viral post
- Comments pour in faster than you can reply
- Brand offers get lost under fan messages
- Hate comments take a toll on your mental health
At first, it’s exciting — proof that your content is connecting. But soon, it becomes overwhelming. Replying to every message isn’t just exhausting… it’s impossible.
This isn’t just a “nice to solve” problem — it’s a business-critical issue. Every missed DM could mean:
- A lost brand deal worth thousands
- A fan losing interest because you didn’t reply
- A missed networking opportunity
- A reputation hit from not responding professionally
Let’s make it real
Real Scenarios Every Influencer Faces (Across Instagram, TikTok & YouTube)
Here are 10 common message types influencers deal with every single day — each one requiring a different tone, priority, and response strategy:
1. Brand Collaboration Offer (Instagram DM)
“Hey! We’re launching a new skincare line and love your content. Would you be interested in a paid partnership? We’d love to discuss details.”
Why It Matters: These are money-makers — but they’re often buried under fan messages. Missing one could cost you $1,000+.
2. Loyal Fan Message (YouTube Comment)
“I’ve been watching you since 2020. Your videos helped me through some tough times Thank you for being you.”
Why It Matters: Engaging with loyal fans builds long-term community. A simple reply can turn a casual viewer into a lifelong supporter.
3. Hate Comment or Troll (TikTok)
“This is cringe. You should stop posting.”
Why It Matters: You can’t waste emotional energy here. Smart filtering helps protect your mental health and focus on real engagement.
4. Fake Brand Scam (Instagram)
“Hello! We want to collaborate. Please click this link to sign the contract: http://instagram.com”
Why It Matters: Scams are common. An AI assistant can flag suspicious messages before you waste time or risk your account.
5. Networking / Creator Collaboration (YouTube DM)
“Hey, I’m a fellow creator in your niche. Would you be up for a collab video? I have some cool ideas.”
Why It Matters: Creator-to-creator collabs are powerful for growth, but they often get lost in the flood.
6. Constructive Criticism (TikTok Comment)
“I love your content, but maybe try shorter videos — I think it would keep people engaged longer.”
Why It Matters: This is gold. Not hate, not spam — real feedback that can help you grow.
7. Content Suggestion from a Follower (Instagram Story Reply)
“Can you make a tutorial on how you edit your reels? I’d love to see your process!”
Why It Matters: Direct content ideas from your audience are free market research — but they’re often overlooked.
8. Support or Product Question (YouTube Comment)
“I bought the merch you promoted, but I haven’t received it yet. Can you help?”
Why It Matters: If you ignore these, your credibility suffers. Prompt replies build trust and brand loyalty.
9. Multilingual Fan Message (TikTok DM)
“Hola! Amo tu contenido, eres mi inspiración 💫”
Why It Matters: Global audiences are growing fast — AI can auto-detect the language and reply naturally without you needing to translate.
10. Business Proposal (Instagram DM)
“We’re hosting a creator summit next quarter. Would you be interested in speaking as a panelist?”
Why It Matters: These messages can elevate your brand and open doors — but they’re easy to miss among hundreds of casual chats.
The truth: 80% of influencer messages fall into these 10 categories — but they’re impossible to handle manually at scale.
Meet Your New Creative Sidekick: AI DM Assistant
Imagine this:
- You open your dashboard.
- All your DMs and comments are already read, analyzed, and prioritized.
- Brand collabs are highlighted
- Hate comments are filtered
- Fans are waiting for your personalized reply
- And — most importantly — GPT-5 has written human-like replies for every message.
All you have to do is click “Send.”
That’s exactly what we’ll build in this series: an AI-powered DM & Comment Responder MVP using Laravel and OpenAI GPT-5.
What This MVP Will Do
Our local MVP won’t be a full SaaS yet — but it will be powerful enough to:
- Read and categorize messages — Fan messages, collabs, hate, etc.
- Generate smart, human-like replies — Using GPT-5 to mimic your tone.
- Prioritize messages automatically — Brand deals first, fans next, trolls last.
- Analyze sentiment — Understand how your audience feels about you.
- Provide reply templates — Stay on-brand with one-click messaging.
The Influencer Economy: Why This Tool Matters (Even as MVP)
Before we get technical, let’s understand why building this tool now is such a big opportunity.
- 91% of brands say influencer marketing is one of their best ROI channels.
- Influencer marketing is projected to hit $25 billion by 2025.
- But influencers still spend 3–5 hours per day replying to messages.
There’s a huge gap between audience engagement demand and the tools creators have to manage it.
The influencers who adopt AI first will have a competitive advantage — they’ll close brand deals faster, build deeper fan relationships, and scale without burning out.
Why GPT-5 Changes Everything
We’ve had chatbots before… but GPT-5 is different.
Here’s why it’s perfect for influencer messaging:
| Capability | Why It Matters for Influencers |
|---|---|
| Deeper Context | Understands entire conversations, not just single messages. |
| Natural Tone | Replies sound like you, not a robot. |
| Emotion Detection | Can sense fan love, sarcasm, or anger. |
| Multilingual | Replies to fans worldwide in their native language. |
| Customizable Style | Can reply casually, professionally, or warmly — depending on your brand. |
Think of GPT-5 as your AI community manager — one that never sleeps, never complains, and always replies in your voice.
What We’ll Build Together: AI DM Assistant MVP
Here’s what we’ll create step by step in this blog series
MVP Features:
- Dashboard: View all messages (mocked from Instagram, TikTok, YouTube)
- Message Prioritizer: Categorizes into Collab, Fan, Hate, or Other
- AI Reply Generator: Suggests smart, human-like responses
- Sentiment Analysis: Shows emotion behind each message
- One-Click Reply: Edit and send replies instantly
Tech Stack:
| Layer | Tool |
|---|---|
| Backend | Laravel 10 |
| Frontend | Blade + Bootstrap 5 |
| AI | OpenAI GPT-5 |
| Data | Mock JSON (simulating platform APIs) |
The MVP Workflow (Visualized)
Here’s how the system will work under the hood:
- Incoming Message: Fetched from mock data (later, real API).
- Message Classification: Tagged as Collab, Fan, Hate, etc.
- Sentiment Analysis: Positive, neutral, or negative.
- Priority Score: Ranked based on importance.
- AI Suggestion: GPT-5 writes a reply.
- User Approval: Influencer edits or clicks “Send.”
Result: 90% less time spent replying — and zero missed opportunities.
Example in Action (Before vs After)
Before AI:
You: spending 3 hours manually replying
Miss brand deals. Miss fans. Get stressed.
After AI DM Assistant:
- Fan Message: “I’ve been watching you since 2020!”
→ AI Suggestion: “You’re amazing Thanks for being part of this journey since day one!” - Hate Comment: “Cringe content…”
→ AI Suggestion: Filtered automatically — no reply needed. - Brand Collab: “We’d love to work with you!”
→ AI Suggestion: “Thanks for reaching out! Can you share more about your campaign details at [info@muneebdev.com]?”
This is how AI turns chaos into clarity — and lets you focus on creating instead of replying.
Setting Up Laravel & Connecting GPT-5 — Your AI DM Assistant Backend Foundation
What We’ll Build in This Part
By the end of this section, you’ll have:
- A fresh Laravel 10 project installed
- Bootstrap + Blade configured for the frontend
- Environment variables ready for GPT-5
- Routes, controllers, and views set up
- A simple mock inbox where we’ll process messages
Step 1: Install Laravel 10
First, let’s spin up a fresh Laravel project. Open your terminal and run:
composer create-project laravel/laravel influencer-ai-dm
Then navigate into the project folder:
cd influencer-ai-dm
Serve it locally:
php artisan serve
You should see something like:
Starting Laravel development server: http://127.0.0.1:8000
Open that URL — if you see the Laravel welcome page, you’re good to go ✅
Step 2: Add Bootstrap (Frontend Styling)
Since we’re using Blade + Bootstrap, let’s install Bootstrap quickly using npm.
npm install bootstrap @popperjs/core
Open resources/js/app.js and add:
import 'bootstrap';
Open resources/sass/app.scss and add:
@import "~bootstrap/scss/bootstrap";
Then compile assets:
npm run dev
Now Bootstrap is ready to use in your Blade templates.
Step 3: Set Up OpenAI API Key
We’ll use the OpenAI PHP SDK to talk to GPT-5.
Install the SDK:
composer require openai-php/client
Next, add your API key in the .env file:
OPENAI_API_KEY=your_openai_api_key_here
OPENAI_MODEL=gpt-5
You can generate your key from: https://muneebdev.com/openai-api-key-setup-2025/
Step 4: Create Routes, Controller, and View
We’ll now create a simple message dashboard route to display messages and generate replies.
Routes
Open routes/web.php and add:
use App\Http\Controllers\MessageController;
Route::get('/', [MessageController::class, 'index'])->name('home');
Route::post('/reply', [MessageController::class, 'generateReply'])->name('reply.generate');
Step 5: Create Controller
Let’s generate a controller to handle message logic:
php artisan make:controller MessageController
Open app/Http/Controllers/MessageController.php and add:
<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;
use OpenAI;
class MessageController extends Controller
{
public function index()
{
// Mock messages (simulating Instagram, TikTok, YouTube inbox)
$messages = [
[
'platform' => 'Instagram',
'sender' => 'GlowSkincareOfficial',
'content' => 'Hey! We’d love to work with you on a paid campaign for our new serum launch.',
'type' => 'collab'
],
[
'platform' => 'TikTok',
'sender' => 'fan_girl101',
'content' => 'I love your content so much you’re my daily motivation!',
'type' => 'fan'
],
[
'platform' => 'YouTube',
'sender' => 'hater123',
'content' => 'This video is so boring… unsubscribed.',
'type' => 'hate'
]
];
return view('messages.index', compact('messages'));
}
public function generateReply(Request $request)
{
$client = OpenAI::client(env('OPENAI_API_KEY'));
$response = $client->chat()->create([
'model' => env('OPENAI_MODEL', 'gpt-5'),
'messages' => [
['role' => 'system', 'content' => 'You are a helpful AI social media assistant. Always reply in a human, friendly, brand-safe tone.'],
['role' => 'user', 'content' => 'Message: '.$request->input('message')],
],
'temperature' => 0.7,
]);
return response()->json([
'reply' => $response->choices[0]->message->content
]);
}
}
What’s happening here:
index()→ Loads a mock inbox with messagesgenerateReply()→ Sends the selected message to GPT-5 and returns a suggested reply
Step 6: Create Blade View
Let’s build a simple dashboard to display messages and generate replies.
Create: resources/views/messages/index.blade.php
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>AI DM Assistant</title>
<link href="{{ mix('css/app.css') }}" rel="stylesheet">
<script src="{{ mix('js/app.js') }}" defer></script>
</head>
<body class="bg-light">
<div class="container py-5">
<h1 class="mb-4 text-center">📨 AI DM Assistant for Influencers</h1>
<div class="row">
@foreach($messages as $message)
<div class="col-md-6 mb-4">
<div class="card shadow-sm">
<div class="card-body">
<span class="badge bg-primary">{{ $message['platform'] }}</span>
<h5 class="mt-2">{{ $message['sender'] }}</h5>
<p>{{ $message['content'] }}</p>
<button class="btn btn-success generate-reply" data-message="{{ $message['content'] }}">✨ Generate AI Reply</button>
<div class="mt-3 reply-output text-success"></div>
</div>
</div>
</div>
@endforeach
</div>
</div>
<script>
document.querySelectorAll('.generate-reply').forEach(btn => {
btn.addEventListener('click', async () => {
const message = btn.getAttribute('data-message');
btn.textContent = ' Generating...';
const res = await fetch('{{ route("reply.generate") }}', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-CSRF-TOKEN': '{{ csrf_token() }}'
},
body: JSON.stringify({ message })
});
const data = await res.json();
btn.parentElement.querySelector('.reply-output').textContent = data.reply;
btn.textContent = ' Generate AI Reply';
});
});
</script>
</body>
</html>
What this does:
- Lists all mock messages
- Allows you to click “ Generate AI Reply” for each one
- Fetches a GPT-5 reply and displays it below the message
Step 7: Test the MVP
Now run the project:
php artisan serve
Visit http://127.0.0.1:8000
You should see your inbox with mock messages from Instagram, TikTok, and YouTube. Try clicking “ Generate AI Reply” — GPT-5 will craft a smart, human-like response.
Building the Smart Reply Engine — Sentiment Analysis & Message Prioritization with GPT-5
What We’ll Build in This Part
In this section, we’ll upgrade our backend logic to:
- Analyze sentiment – Detect whether a message is positive, neutral, or negative.
- Prioritize messages – Decide which messages should come first (e.g., brand deals > fans > trolls).
- Generate context-aware replies – Make GPT-5’s responses smarter based on message type and tone.
This is the step where our MVP starts to feel intelligent — not just reactive.
Step 1: Adding Sentiment Analysis
We’ll use GPT-5 to analyze message sentiment without installing any external NLP libraries. GPT-5 is already great at interpreting emotional tone.
Open MessageController.php and add a helper method for sentiment detection:
private function analyzeSentiment($message)
{
$client = \OpenAI::client(env('OPENAI_API_KEY'));
$response = $client->chat()->create([
'model' => env('OPENAI_MODEL', 'gpt-5'),
'messages' => [
[
'role' => 'system',
'content' => 'You are an assistant that classifies the sentiment of a social media message as positive, neutral, or negative.'
],
[
'role' => 'user',
'content' => "Message: \"$message\". Just respond with one word: Positive, Neutral, or Negative."
],
]
]);
return trim($response->choices[0]->message->content);
}
What this does:
- Sends the message to GPT-5
- Asks it to classify it into Positive / Neutral / Negative
- Returns the sentiment label
Step 2: Detecting Message Type (Priority Classification)
We also want to know what kind of message this is — is it a brand collab? Fan message? Hate comment? Spam?
We’ll write a similar helper for classification:
private function detectMessageType($message)
{
$client = \OpenAI::client(env('OPENAI_API_KEY'));
$response = $client->chat()->create([
'model' => env('OPENAI_MODEL', 'gpt-5'),
'messages' => [
[
'role' => 'system',
'content' => 'You are a social media assistant that classifies messages into categories: brand_collab, fan_message, hate_comment, feedback, spam, or other.'
],
[
'role' => 'user',
'content' => "Classify this message: \"$message\". Just respond with one of the categories."
],
]
]);
return trim($response->choices[0]->message->content);
}
Why this matters:
By knowing the type of message, we can:
- Prioritize brand_collab over fan_message
- Automatically hide or ignore hate_comment
- Treat feedback differently from spam
Step 3: Assigning Priority Score
We’ll now assign a priority score to each message based on its type:
| Type | Priority |
|---|---|
| brand_collab | 5 (highest) |
| feedback | 4 |
| fan_message | 3 |
| other | 2 |
| hate_comment | 1 |
| spam | 0 |
Add this helper:
private function getPriorityScore($type)
{
return match($type) {
'brand_collab' => 5,
'feedback' => 4,
'fan_message' => 3,
'other' => 2,
'hate_comment' => 1,
'spam' => 0,
default => 1
};
}
Step 4: Combine Everything When Loading Messages
Update your index() method to enrich messages with sentiment, type, and priority:
public function index()
{
$messages = [
[
'platform' => 'Instagram',
'sender' => 'GlowSkincareOfficial',
'content' => 'Hey! We’d love to work with you on a paid campaign for our new serum launch.'
],
[
'platform' => 'TikTok',
'sender' => 'fan_girl101',
'content' => 'I love your content so much you’re my daily motivation!'
],
[
'platform' => 'YouTube',
'sender' => 'hater123',
'content' => 'This video is so boring… unsubscribed.'
]
];
foreach ($messages as &$message) {
$message['sentiment'] = $this->analyzeSentiment($message['content']);
$message['type'] = $this->detectMessageType($message['content']);
$message['priority'] = $this->getPriorityScore($message['type']);
}
// Sort messages by priority (highest first)
usort($messages, fn($a, $b) => $b['priority'] <=> $a['priority']);
return view('messages.index', compact('messages'));
}
What’s happening here:
- Each message is now:
- Tagged with sentiment (
Positive,Neutral,Negative) - Classified into a type (
brand_collab,fan_message, etc.) - Scored and sorted by priority
- Tagged with sentiment (
Now your most important messages will always show first in the inbox.
Step 5: Make GPT-5 Reply Smarter Based on Type
Let’s modify generateReply() to include sentiment and type context for GPT-5.
public function generateReply(Request $request)
{
$message = $request->input('message');
$sentiment = $this->analyzeSentiment($message);
$type = $this->detectMessageType($message);
$prompt = "You are an AI DM assistant for a social media influencer.
The message sentiment is $sentiment and the type is $type.
Write a reply that is human-like, friendly, and brand-appropriate.";
if ($type === 'brand_collab') {
$prompt .= " Ask for more details about the campaign and share the email for contact.";
} elseif ($type === 'fan_message') {
$prompt .= " Reply warmly and appreciatively, maybe include emojis.";
} elseif ($type === 'hate_comment') {
$prompt .= " Suggest ignoring the message or responding politely but firmly.";
}
$client = \OpenAI::client(env('OPENAI_API_KEY'));
$response = $client->chat()->create([
'model' => env('OPENAI_MODEL', 'gpt-5'),
'messages' => [
['role' => 'system', 'content' => 'You are a helpful and brand-safe social media assistant.'],
['role' => 'user', 'content' => $prompt . "\nMessage: " . $message],
],
'temperature' => 0.7,
]);
return response()->json([
'reply' => $response->choices[0]->message->content,
'sentiment' => $sentiment,
'type' => $type
]);
}
Result: GPT-5 now tailors its replies based on message type and sentiment — making the assistant feel truly intelligent.
Step 6: Show Sentiment & Priority in the UI
Open resources/views/messages/index.blade.php and add sentiment and type tags:
<div class="card-body">
<span class="badge bg-primary">{{ $message['platform'] }}</span>
<span class="badge bg-info">{{ ucfirst($message['type']) }}</span>
<span class="badge bg-{{ $message['sentiment'] === 'Positive' ? 'success' : ($message['sentiment'] === 'Negative' ? 'danger' : 'secondary') }}">
{{ $message['sentiment'] }}
</span>
<h5 class="mt-2">{{ $message['sender'] }}</h5>
<p>{{ $message['content'] }}</p>
Result: Your inbox now shows:
- Platform
- Message type (Brand Collab, Fan Message, etc.)
- Sentiment color-coded badge (Positive, Neutral, Negative)
Quick Test
Start the server:
php artisan serve
Now refresh your dashboard. You should see:
- Messages sorted by priority
- Sentiment and type badges
- GPT-5 generating context-aware replies
Real-Life Example (Before vs After)
Message:
“We’re launching a new skincare line and would love to partner with you!”
Old Reply:
“Thanks for reaching out!”
(Generic, doesn’t move the conversation forward)
New GPT-5 Reply:
“Thank you so much for thinking of me! I’d love to hear more about the campaign — could you share your goals and timeline? You can reach me directly at info@muneebdev.com.”
See the difference? Now the AI isn’t just replying — it’s driving action.
Frontend — A Clean, Clickable Inbox (Blade + Bootstrap) That Feels Like a Real Product
Welcome to the most visible part of the MVP: the dashboard UI. Up to now, our Laravel app can read mock messages, analyze them with GPT-5, and generate context-aware replies. In this part, we’ll make it pleasant and productive for creators to use:
- A responsive inbox grid with message cards
- Tabs for message categories (All / Collabs / Fans / Feedback / Hate / Spam / Other)
- Search + filters (by platform & sentiment)
- Sort (by priority)
- A Reply modal to preview, edit, copy, and “mark as sent” (mock)
- Friendly toasts for user feedback
Everything will be built using Blade + Bootstrap with a sprinkle of vanilla JS. No fancy frameworks required.
Note: We’ll keep the CTA only in Part 5, per your request.
What We’ll Implement (Frontend UX Flow)
- Layout: a single base layout (
resources/views/layouts/app.blade.php) that loads Bootstrap via Vite. - Inbox Page: enhance
resources/views/messages/index.blade.phpwith tabs, filters, search, and cards. - Reply Modal: click “Generate AI Reply” → modal opens → reply loads → user can edit/copy/mark.
- Client-side Interactions: JS handles tab switching, search/filter logic, and toasts.
Step 1: Base Layout (Blade + Bootstrap via Vite)
If you used Laravel Mix earlier, let’s standardize on Vite (Laravel 10’s default). This just means we’ll reference assets with
@vite().
Create resources/views/layouts/app.blade.php:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>@yield('title', 'AI DM Assistant')</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
@vite(['resources/css/app.css', 'resources/js/app.js'])
<style>
/* Small UI niceties */
body { background: #f8fafc; }
.card-hover:hover { transform: translateY(-2px); transition: .2s; }
.badge-pill { border-radius: 50rem; padding: .35rem .6rem; }
.priority-5 { border-left: 4px solid #6f42c1; } /* brand_collab: purple */
.priority-4 { border-left: 4px solid #0d6efd; } /* feedback: blue */
.priority-3 { border-left: 4px solid #20c997; } /* fan_message: teal */
.priority-2 { border-left: 4px solid #6c757d; } /* other: gray */
.priority-1 { border-left: 4px solid #fd7e14; } /* hate_comment: orange */
.priority-0 { border-left: 4px solid #dc3545; } /* spam: red */
.sentiment-positive { background: #d1e7dd; color: #0f5132; }
.sentiment-neutral { background: #e2e3e5; color: #41464b; }
.sentiment-negative { background: #f8d7da; color: #842029; }
.tab-pill .nav-link { border-radius: 999px; }
.filter-chip { border-radius: 20px; }
.message-text { white-space: pre-wrap; }
.cursor-pointer { cursor: pointer; }
</style>
</head>
<body>
<nav class="navbar navbar-expand-lg navbar-light bg-white border-bottom sticky-top">
<div class="container">
<a class="navbar-brand fw-bold" href="{{ route('home') }}">📨 AI DM Assistant</a>
<div class="ms-auto small text-muted d-none d-md-block">Laravel + GPT-5</div>
</div>
</nav>
<main class="container py-4">
@yield('content')
</main>
<!-- Toast Container -->
<div class="position-fixed bottom-0 end-0 p-3" style="z-index: 1080">
<div id="toast" class="toast align-items-center text-bg-dark border-0" role="alert" aria-live="assertive" aria-atomic="true">
<div class="d-flex">
<div id="toast-body" class="toast-body">Action completed.</div>
<button type="button" class="btn-close btn-close-white me-2 m-auto" data-bs-dismiss="toast" aria-label="Close"></button>
</div>
</div>
</div>
</body>
</html>
Step 2: Ensure Bootstrap Is Loaded with Vite
We already installed Bootstrap in Part 2:
npm install bootstrap @popperjs/core
Make sure these two files import Bootstrap:
resources/js/app.js
import './bootstrap';
import 'bootstrap';
resources/css/app.css (create if you used SCSS earlier; plain CSS import works too)
@import "bootstrap/dist/css/bootstrap.min.css";
Build assets:
npm run dev
Step 3: The Inbox UI (Tabs, Filters, Search, Cards, Modal)
Replace your resources/views/messages/index.blade.php with this enhanced version:
@extends('layouts.app')
@section('title', 'Inbox • AI DM Assistant')
@section('content')
<div class="d-flex align-items-center justify-content-between mb-4">
<div>
<h1 class="h3 mb-0">Inbox</h1>
<div class="text-muted small">Smart, prioritized messages from Instagram, TikTok, and YouTube (mocked for MVP)</div>
</div>
<div>
<span class="badge bg-dark">MVP</span>
</div>
</div>
<!-- Tabs -->
<ul class="nav nav-pills tab-pill mb-3" id="typeTabs">
@php
$types = ['all' => 'All', 'brand_collab' => 'Collabs', 'fan_message' => 'Fans', 'feedback' => 'Feedback', 'hate_comment' => 'Hate', 'spam' => 'Spam', 'other' => 'Other'];
@endphp
@foreach($types as $key => $label)
<li class="nav-item me-2">
<a class="nav-link {{ $loop->first ? 'active' : '' }}" data-type="{{ $key }}" href="#">{{ $label }}</a>
</li>
@endforeach
</ul>
<!-- Filters / Search -->
<div class="row g-2 mb-3">
<div class="col-md-4">
<input id="searchInput" type="text" class="form-control" placeholder="Search messages, senders, platforms..." />
</div>
<div class="col-md-3">
<select id="platformFilter" class="form-select">
<option value="">Platform: All</option>
<option value="Instagram">Instagram</option>
<option value="TikTok">TikTok</option>
<option value="YouTube">YouTube</option>
</select>
</div>
<div class="col-md-3">
<select id="sentimentFilter" class="form-select">
<option value="">Sentiment: All</option>
<option value="Positive">Positive</option>
<option value="Neutral">Neutral</option>
<option value="Negative">Negative</option>
</select>
</div>
<div class="col-md-2">
<select id="sortSelect" class="form-select">
<option value="priority_desc">Sort: Priority (high → low)</option>
<option value="priority_asc">Sort: Priority (low → high)</option>
<option value="sender_asc">Sort: Sender (A → Z)</option>
<option value="sender_desc">Sort: Sender (Z → A)</option>
</select>
</div>
</div>
<!-- Grid -->
<div id="cardsGrid" class="row">
@foreach($messages as $message)
@php
$priorityClass = "priority-".($message['priority'] ?? 1);
$sentimentClass = strtolower($message['sentiment'] ?? 'Neutral');
$sentimentBadgeClass = $message['sentiment'] === 'Positive' ? 'sentiment-positive' : ($message['sentiment'] === 'Negative' ? 'sentiment-negative' : 'sentiment-neutral');
@endphp
<div class="col-md-6 mb-3 message-card"
data-type="{{ $message['type'] ?? 'other' }}"
data-platform="{{ $message['platform'] ?? '' }}"
data-sentiment="{{ $message['sentiment'] ?? 'Neutral' }}"
data-priority="{{ $message['priority'] ?? 1 }}"
data-sender="{{ $message['sender'] ?? '' }}"
data-content="{{ $message['content'] ?? '' }}">
<div class="card shadow-sm card-hover {{ $priorityClass }}">
<div class="card-body">
<div class="d-flex align-items-center justify-content-between mb-2">
<div class="d-flex align-items-center gap-2">
<span class="badge bg-primary">{{ $message['platform'] }}</span>
<span class="badge bg-info text-dark">{{ ucfirst($message['type']) }}</span>
<span class="badge {{ $sentimentBadgeClass }}">{{ $message['sentiment'] }}</span>
<span class="badge bg-light text-dark border">Priority: {{ $message['priority'] }}</span>
</div>
<div class="text-muted small">{{ now()->format('M d') }}</div>
</div>
<h5 class="mb-1">{{ $message['sender'] }}</h5>
<p class="message-text mb-3">{{ $message['content'] }}</p>
<div class="d-flex gap-2">
<button class="btn btn-success btn-sm generate-reply-btn"
data-message="{{ $message['content'] }}"
data-sender="{{ $message['sender'] }}"
data-type="{{ $message['type'] }}"
data-sentiment="{{ $message['sentiment'] }}">
✨ Generate AI Reply
</button>
<button class="btn btn-outline-secondary btn-sm copy-message-btn">Copy Message</button>
<button class="btn btn-outline-dark btn-sm mark-read-btn">Mark as Read</button>
</div>
</div>
</div>
</div>
@endforeach
</div>
<!-- Reply Modal -->
<div class="modal fade" id="replyModal" tabindex="-1" aria-labelledby="replyModalLabel" aria-hidden="true">
<div class="modal-dialog modal-lg modal-dialog-scrollable">
<div class="modal-content">
<div class="modal-header">
<h5 id="replyModalLabel" class="modal-title">AI Reply</h5>
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
</div>
<div class="modal-body">
<div class="mb-2 text-muted small">
<span id="modalMeta"></span>
</div>
<label class="form-label">Suggested Reply</label>
<textarea id="replyTextarea" class="form-control" rows="6" placeholder="Generating…"></textarea>
</div>
<div class="modal-footer">
<button id="btnCopyReply" type="button" class="btn btn-outline-secondary">Copy</button>
<button id="btnSaveTemplate" type="button" class="btn btn-outline-primary">Save as Template</button>
<button id="btnMarkSent" type="button" class="btn btn-success" data-bs-dismiss="modal">Mark as Sent (Mock)</button>
</div>
</div>
</div>
</div>
<!-- CSRF -->
<meta name="csrf-token" content="{{ csrf_token() }}">
<script>
(function(){
const csrf = document.querySelector('meta[name="csrf-token"]').getAttribute('content');
const toastEl = document.getElementById('toast');
const toastBody = document.getElementById('toast-body');
const toast = new bootstrap.Toast(toastEl, { delay: 2000 });
const showToast = (msg) => { toastBody.textContent = msg; toast.show(); };
// Tabs
const tabs = document.querySelectorAll('#typeTabs .nav-link');
let activeType = 'all';
tabs.forEach(tab => {
tab.addEventListener('click', (e) => {
e.preventDefault();
tabs.forEach(t => t.classList.remove('active'));
tab.classList.add('active');
activeType = tab.getAttribute('data-type');
applyFilters();
});
});
// Filters
const searchInput = document.getElementById('searchInput');
const platformFilter = document.getElementById('platformFilter');
const sentimentFilter = document.getElementById('sentimentFilter');
const sortSelect = document.getElementById('sortSelect');
const grid = document.getElementById('cardsGrid');
searchInput.addEventListener('input', applyFilters);
platformFilter.addEventListener('change', applyFilters);
sentimentFilter.addEventListener('change', applyFilters);
sortSelect.addEventListener('change', applyFilters);
function applyFilters() {
const query = searchInput.value.toLowerCase().trim();
const platform = platformFilter.value;
const sentiment = sentimentFilter.value;
// NodeList -> Array for sorting
const cards = Array.from(grid.querySelectorAll('.message-card'));
cards.forEach(card => {
const cardType = card.getAttribute('data-type');
const cardPlatform = card.getAttribute('data-platform');
const cardSentiment = card.getAttribute('data-sentiment');
const sender = (card.getAttribute('data-sender') || '').toLowerCase();
const content = (card.getAttribute('data-content') || '').toLowerCase();
let visible = true;
if (activeType !== 'all' && cardType !== activeType) visible = false;
if (platform && cardPlatform !== platform) visible = false;
if (sentiment && cardSentiment !== sentiment) visible = false;
if (query && !(sender.includes(query) || content.includes(query))) visible = false;
card.style.display = visible ? '' : 'none';
});
// Sorting (only visible cards)
const visibleCards = cards.filter(c => c.style.display !== 'none');
visibleCards.sort((a, b) => {
const sortVal = sortSelect.value;
if (sortVal === 'priority_desc') {
return (parseInt(b.dataset.priority) || 0) - (parseInt(a.dataset.priority) || 0);
} else if (sortVal === 'priority_asc') {
return (parseInt(a.dataset.priority) || 0) - (parseInt(b.dataset.priority) || 0);
} else if (sortVal === 'sender_asc') {
return (a.dataset.sender || '').localeCompare(b.dataset.sender || '');
} else if (sortVal === 'sender_desc') {
return (b.dataset.sender || '').localeCompare(a.dataset.sender || '');
}
return 0;
});
// Re-append in new order
visibleCards.forEach(c => grid.appendChild(c));
}
// Buttons: copy original message / mark read
grid.addEventListener('click', async (e) => {
const card = e.target.closest('.message-card');
if (!card) return;
if (e.target.classList.contains('copy-message-btn')) {
await navigator.clipboard.writeText(card.dataset.content);
showToast('Message copied to clipboard.');
return;
}
if (e.target.classList.contains('mark-read-btn')) {
card.classList.add('opacity-75');
showToast('Marked as read (mock).');
return;
}
});
// Generate Reply (opens modal)
const replyModal = new bootstrap.Modal(document.getElementById('replyModal'));
const replyTextarea = document.getElementById('replyTextarea');
const modalMeta = document.getElementById('modalMeta');
let currentMessage = null;
grid.addEventListener('click', async (e) => {
const btn = e.target.closest('.generate-reply-btn');
if (!btn) return;
const msg = btn.getAttribute('data-message');
const sender = btn.getAttribute('data-sender');
const type = btn.getAttribute('data-type');
const sentiment = btn.getAttribute('data-sentiment');
currentMessage = { msg, sender, type, sentiment };
replyTextarea.value = 'Generating…';
modalMeta.textContent = `${sender} • ${type.replace('_',' ')} • ${sentiment}`;
replyModal.show();
try {
// Hit Laravel route to generate reply
const res = await fetch(`{{ route('reply.generate') }}`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-CSRF-TOKEN': csrf
},
body: JSON.stringify({ message: msg })
});
const data = await res.json();
replyTextarea.value = data.reply || '(No reply generated)';
} catch (err) {
replyTextarea.value = 'Failed to generate reply. Please try again.';
}
});
// Modal actions
document.getElementById('btnCopyReply').addEventListener('click', async () => {
await navigator.clipboard.writeText(replyTextarea.value);
showToast('Reply copied to clipboard.');
});
document.getElementById('btnSaveTemplate').addEventListener('click', () => {
// For MVP, just toast; in Part 5 you can persist templates to DB
showToast('Saved as template (mock).');
});
document.getElementById('btnMarkSent').addEventListener('click', () => {
showToast('Marked as sent (mock).');
});
// Initial render
applyFilters();
})();
</script>
@endsection
What the UI Delivers
- Tabs to slice the inbox by message type
- Search across sender and message content
- Filters for platform & sentiment
- Sorting by priority or sender
- Message cards that show platform, type, sentiment, and priority at a glance
- One-click actions: Generate AI reply (modal), copy message, mark as read
- Toasts to confirm actions
Optional: Extract a Blade Component (Clean Code Bonus)
If you prefer to keep index.blade.php tidy, you can extract each card into a Blade component:
- Create
resources/views/components/message-card.blade.php - Move the inner card markup there
- Render it with:
<x-message-card :message="$message" />
This is purely organizational and optional for the MVP.
Quick Test
Start your servers:
php artisan serve
npm run dev
Visit http://127.0.0.1:8000 and play with:
- Tabs (e.g., Collabs to surface brand deals)
- Search (try “skincare” or a sender handle)
- Sentiment filter (e.g., only Negative to triage)
- Generate AI Reply → edit/copy/mark in the modal
You now have a convincing, creator-friendly interface that behaves like a real product.
Final Touches, Testing, Real API Integrations & Your Path to SaaS (with the Big CTA)
Welcome to the finale! Your MVP already reads, classifies, prioritizes, and replies to messages with GPT-5. In this part we’ll:
- Add brand voice controls and pre-approved templates
- Persist messages, AI replies, and templates to the DB
- Wire up a couple of quality-of-life features (hide trolls, audit logs)
- Explain the path to real Instagram/TikTok/YouTube APIs
- Outline the SaaS roadmap (auth, teams, billing, monitoring, privacy)
- Share testing checklists and launch tips
- End with the single, final CTA you requested
Throughout, we’ll keep this useful for both creators and developers, optimized for the keywords:
- Primary:
AI DM assistant for influencers - Secondary:
automate Instagram replies with AI,TikTok DM reply automation,YouTube comment responder using OpenAI
1) Brand Voice Controls + Pre-Approved Templates
Creators want replies that sound like them. We’ll add:
- Brand voice settings (tone, signature, emoji use)
- Template management (create, save, insert)
1.1 Database: Settings & Templates
php artisan make:migration create_settings_and_templates_tables
// database/migrations/xxxx_xx_xx_xxxxxx_create_settings_and_templates_tables.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;
return new class extends Migration {
public function up(): void {
Schema::create('settings', function (Blueprint $t) {
$t->id();
$t->string('brand_voice')->default('friendly, concise, on-brand, inclusive');
$t->boolean('use_emojis')->default(true);
$t->string('signature')->nullable(); // e.g., "- Alex "
$t->timestamps();
});
Schema::create('templates', function (Blueprint $t) {
$t->id();
$t->string('name');
$t->text('content'); // e.g., "Thanks for reaching out! Please email {email}…"
$t->timestamps();
});
}
public function down(): void {
Schema::dropIfExists('templates');
Schema::dropIfExists('settings');
}
};
Seed a default setting and a couple of templates:
php artisan make:seeder SettingsTemplatesSeeder
// database/seeders/SettingsTemplatesSeeder.php
namespace Database\Seeders;
use Illuminate\Database\Seeder;
use Illuminate\Support\Facades\DB;
class SettingsTemplatesSeeder extends Seeder {
public function run(): void {
DB::table('settings')->insert([
'brand_voice' => 'warm, concise, positive, professional',
'use_emojis' => true,
'signature' => '- Team Luna ',
]);
DB::table('templates')->insert([
['name' => 'Collab – Request Details', 'content' => "Thanks for reaching out! I'd love to learn more. Could you share goals, timeline, deliverables, and budget? You can email us at hello@example.com.\n{signature}"],
['name' => 'Fan – Appreciation', 'content' => "You made my day Thanks for the love and for being here!\n{signature}"],
['name' => 'Hate – No Engagement', 'content' => "(No reply)"],
]);
}
}
Run migrations and seeders:
php artisan migrate --seed --class=SettingsTemplatesSeeder
1.2 Models
php artisan make:model Setting
php artisan make:model Template
// app/Models/Setting.php
namespace App\Models;
use Illuminate\Database\Eloquent\Model;
class Setting extends Model {
protected $fillable = ['brand_voice','use_emojis','signature'];
}
// app/Models/Template.php
namespace App\Models;
use Illuminate\Database\Eloquent\Model;
class Template extends Model {
protected $fillable = ['name','content'];
}
1.3 Controller Endpoints
php artisan make:controller SettingsController
php artisan make:controller TemplateController
// routes/web.php
use App\Http\Controllers\SettingsController;
use App\Http\Controllers\TemplateController;
Route::get('/settings', [SettingsController::class, 'edit'])->name('settings.edit');
Route::post('/settings', [SettingsController::class, 'update'])->name('settings.update');
Route::get('/templates', [TemplateController::class, 'index'])->name('templates.index');
Route::post('/templates', [TemplateController::class, 'store'])->name('templates.store');
// app/Http/Controllers/SettingsController.php
namespace App\Http\Controllers;
use App\Models\Setting;
use Illuminate\Http\Request;
class SettingsController extends Controller {
public function edit() {
$settings = Setting::first();
return view('settings.edit', compact('settings'));
}
public function update(Request $r) {
$settings = Setting::first();
$settings->update([
'brand_voice' => $r->input('brand_voice'),
'use_emojis' => (bool) $r->input('use_emojis'),
'signature' => $r->input('signature'),
]);
return back()->with('status','Settings saved!');
}
}
// app/Http/Controllers/TemplateController.php
namespace App\Http\Controllers;
use App\Models\Template;
use Illuminate\Http\Request;
class TemplateController extends Controller {
public function index() {
$templates = Template::latest()->get();
return view('templates.index', compact('templates'));
}
public function store(Request $r) {
$r->validate(['name'=>'required','content'=>'required']);
Template::create($r->only('name','content'));
return back()->with('status','Template saved!');
}
}
1.4 Views (compact)
Brand Settings (Blade): resources/views/settings/edit.blade.php
@extends('layouts.app')
@section('title','Brand Voice & Settings')
@section('content')
<h1 class="h4 mb-3">Brand Voice & Settings</h1>
@if(session('status')) <div class="alert alert-success">{{ session('status') }}</div> @endif
<form method="POST" action="{{ route('settings.update') }}" class="card p-3">
@csrf
<div class="mb-3">
<label class="form-label">Brand Voice (prompt hint)</label>
<input name="brand_voice" class="form-control" value="{{ $settings->brand_voice }}">
<div class="form-text">e.g., "warm, concise, professional, inclusive"</div>
</div>
<div class="mb-3 form-check">
<input type="checkbox" name="use_emojis" class="form-check-input" id="useEmojis" {{ $settings->use_emojis ? 'checked' : '' }}>
<label class="form-check-label" for="useEmojis">Prefer emojis where appropriate</label>
</div>
<div class="mb-3">
<label class="form-label">Signature (optional)</label>
<input name="signature" class="form-control" value="{{ $settings->signature }}">
</div>
<button class="btn btn-primary">Save Settings</button>
</form>
@endsection
Templates (Blade): resources/views/templates/index.blade.php
@extends('layouts.app')
@section('title','Templates')
@section('content')
<h1 class="h4 mb-3">Reply Templates</h1>
@if(session('status')) <div class="alert alert-success">{{ session('status') }}</div> @endif
<form method="POST" action="{{ route('templates.store') }}" class="card p-3 mb-3">
@csrf
<div class="row g-2">
<div class="col-md-4"><input name="name" class="form-control" placeholder="Template name"></div>
<div class="col-md-8"><textarea name="content" class="form-control" rows="2" placeholder="Template content, use {signature}"></textarea></div>
</div>
<div class="mt-2"><button class="btn btn-outline-primary btn-sm">Add Template</button></div>
</form>
<div class="row">
@foreach($templates as $t)
<div class="col-md-6 mb-3">
<div class="card h-100">
<div class="card-body">
<h6 class="card-title">{{ $t->name }}</h6>
<pre class="mb-0" style="white-space: pre-wrap">{{ $t->content }}</pre>
</div>
</div>
</div>
@endforeach
</div>
@endsection
1.5 Use Brand Voice in GPT-5 Prompts
Update MessageController@generateReply to include settings:
use App\Models\Setting;
use App\Models\Template;
// ... inside generateReply()
$settings = Setting::first();
$voice = $settings?->brand_voice ?? 'friendly, concise';
$emoji = $settings?->use_emojis ? 'Use tasteful emojis when natural.' : 'Do not use emojis.';
$signature = $settings?->signature;
// Build prompt
$prompt = "You are an AI DM assistant for a social media influencer.
Brand voice: {$voice}. {$emoji}
If appropriate, end with this signature exactly as given: {$signature}
The message sentiment is {$sentiment} and the type is {$type}.
Write a reply that is human-like, safe, and on-brand.";
In the modal , we already added “Save as Template (mock)”. You can now wire that to
POST /templatesto persist user-curated replies.
2) Persist Messages & Audit AI Replies
Let’s store incoming messages and AI replies with an audit trail.
2.1 Migrations & Models
php artisan make:migration create_messages_and_replies_tables
// database/migrations/xxxx_xx_xx_xxxxxx_create_messages_and_replies_tables.php
use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;
return new class extends Migration {
public function up(): void {
Schema::create('messages', function (Blueprint $t) {
$t->id();
$t->string('platform'); // Instagram | TikTok | YouTube
$t->string('sender');
$t->text('content');
$t->string('type')->nullable(); // brand_collab, fan_message, etc.
$t->string('sentiment')->nullable(); // Positive, Neutral, Negative
$t->unsignedTinyInteger('priority')->default(1);
$t->boolean('is_read')->default(false);
$t->timestamps();
});
Schema::create('replies', function (Blueprint $t) {
$t->id();
$t->foreignId('message_id')->constrained('messages')->cascadeOnDelete();
$t->text('ai_suggestion');
$t->text('final_reply')->nullable(); // after user edits
$t->string('status')->default('draft'); // draft | sent
$t->timestamps();
});
}
public function down(): void {
Schema::dropIfExists('replies');
Schema::dropIfExists('messages');
}
};
php artisan make:model Message
php artisan make:model Reply
// app/Models/Message.php
namespace App\Models;
use Illuminate\Database\Eloquent\Model;
class Message extends Model {
protected $fillable = ['platform','sender','content','type','sentiment','priority','is_read'];
public function replies() { return $this->hasMany(Reply::class); }
}
// app/Models/Reply.php
namespace App\Models;
use Illuminate\Database\Eloquent\Model;
class Reply extends Model {
protected $fillable = ['message_id','ai_suggestion','final_reply','status'];
public function message() { return $this->belongsTo(Message::class); }
}
2.2 Saving on Generation
In generateReply, after GPT-5 creates text:
use App\Models\Message;
use App\Models\Reply;
// Optionally, create or find the Message record (for mocks, you can pass an ID from the card)
$messageId = $request->input('message_id');
if (!$messageId) {
// fallback: create ephemeral Message for demo
$msg = Message::create([
'platform' => 'Mock',
'sender' => 'Unknown',
'content' => $message,
'type' => $type,
'sentiment' => $sentiment,
'priority' => $this->getPriorityScore($type),
]);
$messageId = $msg->id;
}
$reply = Reply::create([
'message_id' => $messageId,
'ai_suggestion' => $response->choices[0]->message->content,
'status' => 'draft',
]);
return response()->json([
'reply' => $reply->ai_suggestion,
'reply_id' => $reply->id,
'sentiment' => $sentiment,
'type' => $type,
]);
Add an endpoint to mark sent and to save edits:
// routes/web.php
Route::post('/reply/{reply}/send', [MessageController::class, 'markSent'])->name('reply.send');
Route::post('/reply/{reply}/save', [MessageController::class, 'saveEdit'])->name('reply.save');
// app/Http/Controllers/MessageController.php
use App\Models\Reply;
public function saveEdit(Request $r, Reply $reply) {
$reply->update(['final_reply' => $r->input('final_reply')]);
return response()->json(['ok' => true]);
}
public function markSent(Reply $reply) {
$reply->update(['status' => 'sent']);
$reply->message->update(['is_read' => true]);
return response()->json(['ok' => true]);
}
Update the modal JS (Part 4) to call these endpoints when user clicks Save or Mark as Sent.
3) Quality-of-Life: Auto-Hide Trolls, Safety & Moderation
- Auto-hide hate/spam: In
index(), don’t render cards wheretypein['hate_comment','spam']unless a “Show filtered” toggle is on. - Safety filter (optional): Add an OpenAI Moderation check before sending a reply. If flagged, ask the user to review.
- Profanity guard: Redact sensitive words from suggested replies: replace with “—”.
For MVP, a simple rule: if
type === 'hate_comment', default to no reply template.
4) Real Integrations (APIs & Approvals)
This MVP uses mock data, but you’ll likely want real platform connections. Here’s the practical summary:
| Platform | What You Can Access | DM Support | Approval Needed | Notes |
|---|---|---|---|---|
| Instagram (Meta Graph API) | Comments, Mentions, Messaging (Business) | Limited to Business Accounts | App Review & permissions | Requires Instagram Business + Facebook Page + App in Meta Dev. Rate limits apply. |
| TikTok (TikTok for Developers) | Comments, Video stats, Webhooks | DMs limited/partner-only | App Review | Comment read/write with scopes. DMs are restricted; plan for comments first. |
| YouTube (Data API v3) | Comments, Replies, Moderation | N/A (no DMs) | API key & quotas | You can fetch comments & reply via the Data API. Threads & moderation are supported. |
Approach for production:
- Start with YouTube comments (simplest).
- Add Instagram comments & messaging for Business accounts after App Review.
- For TikTok, begin with comments; treat DMs as roadmap (or partner).
Integration flow (generic):
- OAuth login ➜ store access tokens securely
- Webhook/cron to fetch latest comments/DMs
- Normalize to your
messagestable - Use your existing pipeline (type/sentiment/priority ➜ GPT-5 reply)
For local demos, keep mocks. For staging/production, add queues (Redis), webhooks, and reties.
5) Testing Checklists
Creator UX
- Can filter by type, sentiment, and platform
- “Generate AI Reply” returns in < 2–4s (use queues if needed)
- Templates insert correctly and honor
{signature} - “Mark as Sent” updates card state
Content Safety
- Hate/spam auto-hidden unless toggled
- Replies never include personal data you don’t own
- Emojis respect the user setting
Developer QA
- DB migrations clean on fresh clone:
migrate --seed - ENV set:
OPENAI_API_KEY,OPENAI_MODEL=gpt-5 - Rate limits respected; exponential backoff on errors
- Logs capture prompt + response IDs (not full PII content)
Performance
- N+1 queries avoided (use eager loading)
usort()replaced with DB ordering when data grows- Add indexes:
messages(type, sentiment, priority)
6) From MVP to SaaS: Your Roadmap
Product
- Multi-inbox: Instagram, TikTok, YouTube tabs with real tokens
- Auto-respond windows (sleep hours, peak times)
- Weekly insights (top sentiments, unanswered collabs, best-performing replies)
- Team seats (manager can approve replies)
Engineering
- Auth: Laravel Breeze/Jetstream; social logins later
- Multi-tenant:
tenant_idon tables or use a package likestancl/tenancy - Queues: Laravel Horizon + Redis for async AI & API calls
- Webhooks & Cron: process new comments/DMs every few minutes
- Observability: Laravel Telescope, Sentry, OpenTelemetry
- Caching: Cache classifications for idempotency
- Feature flags: Turn on/off platforms per tenant
Billing & Plans
- Stripe (Cashier) with usage-based metrics (AI tokens, messages synced)
- Plans: Starter (YouTube only), Pro (YouTube + IG), Business (all + team)
- Hard/soft caps to control costs from GPT-5 usage
Security & Privacy
- Encrypt tokens at rest (Laravel
APP_KEY+ encryption) - Row-level access control (Policies/Gates)
- Data retention (auto-delete raw DMs after X days, keep metadata)
- Compliance (ToS, Privacy Policy, platform policy adherence)
7) Prompt Engineering Tips (That Actually Matter)
- Few-shot examples: Include 2–3 “good replies” in the system prompt for each type (brand, fan, feedback).
- Hard constraints: “Never promise pricing. Never share personal contact except this email: info@muneebdev.com.”
- Language auto-detect: “If user writes Spanish, reply in Spanish.”
- Ask-back heuristic: For fans, end with 1 friendly follow-up question to boost engagement.
- Length control: “Max 60 words unless brand_collab.”
8) Ops Tips for GPT-5 in Production
- Keep
OPENAI_MODELin.envso you can roll back togpt-4-turboif needed. - Log only hashes of prompts (privacy) + response IDs for support.
- Use streaming for faster perceived latency (show the reply as it types).
- Batch classify sentiments/types to reduce API calls (e.g., 10 at once).
.env example
OPENAI_API_KEY=sk-...
OPENAI_MODEL=gpt-5
OPENAI_TIMEOUT=25
OPENAI_MAX_TOKENS=800
9) Example E2E Flow (Putting It All Together)
- Fetcher (mock or real API) inserts into
messages - Classifier job fills
type,sentiment,priority - Creator opens inbox ➜ filters ➜ clicks message
- GPT-5 generates reply with brand voice and signature
- Creator edits ➜ Save (template optional) ➜ Mark as Sent
- Audit: reply stored, message marked read, insights updated
This is a complete loop that automates Instagram replies with AI, enables TikTok DM reply automation (as the API permits), and powers a YouTube comment responder using OpenAI — exactly what modern creators need.
You Did It: An MVP That Feels Like a Product
You now have a working AI DM assistant for influencers with:
- Smart classification & sentiment
- Prioritized inbox
- Brand voice control
- Templates
- Persisted replies & audit trail
- A clean, responsive UI
From here, it’s mostly API tokens, queues, and polish to go live.
Final CTA
If you’re an influencer (Instagram, TikTok, or YouTube) or a brand/agency and you want this AI DM assistant tailored to your voice, platforms, and workflow—we can build and ship it for you.

Comments